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Thermodynamic properties of a polydisperse system
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We use the virial theorem to derive a closed analytic form of the Helmholtz free energy for a polydisperse
system of sticky hard spheré€SHS within the mean spherical modéMSM). To this end we calculate the free
energy of the MSM for amN-component mixture of SHS via the virial route and apply to it—after imposing a
Lorentz-Berthelot type rule on the interactions—the stochdsgc polydisperselimit. The resulting excess
free energy of this polydisperse system is of the truncatable moment free energy format. We also discuss the
compressibility and the energy routes.
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I. INTRODUCTION So far, this was accomplished for the mean spherical model

. (MSM) for the following polydisperse systems in closed ana-
In 1968 Baxter presentdd] sticky hard sphereSSHS as \ytica) form: HS structurd6] and thermodynamic properties

an exactly solvable system of the Percus-Ye\ieX) equa- 7], charged HS structur8], and SHS structurg9,10].

tion beyond pure hard spher@sS), introducing an attractive In this contribution we consider a polydisperse system of
interaction on the surface of the particles. Meanwhile, SHESHS within the MSM. Starting from the explicit expressions
have become a well-appreciated analytic model for colloidafor the structure functions presented in a recent contribution
systems(for an overview see, for instance, the introduction[9], we derive—via the virial route—a closed expression for
of [2]): typically, interactions of colloidal particles have a the (specifio Helmholtz free energy, i.e., a thermodynamic
harsh repulsion in the core region and a short ranged anguantity thgt is sufficient to determine phase coexistence.
strong attraction at the surface of the partidl@s The par-  The analysis starts from at-component system; results for
ticularity of the composition of colloidal systems is their the polydisperse case are derived by imposing a Lorentz-
polydispersity: in contrast to atomic fluids, the particles of aBertthot type of relation for. th? potentlal parameters gnd by
polydisperse system are no longer equally sized, their Sizgpplylng then th_e stochastic limit: we _replace th_e discrete
(in terms of their diameteR) is described by a continuous concentrations vig;— fr(R)dR, a prescrlptlon_that IS b"’?sed
probability distribution functiorf z(R). To take this property on the law of large number[é.l]. The expressions obtained
into account in their theoretical description represents a ford'® rather complex. We also discuss the energy route and the

midable challenge. From the conceptual point of view, sucfFeMPressibility routepointing out in the latter case an in-
polydisperse systems can conveniently be viewed as fluigeonsistency of the_MSM . .
with components characterized by thentinuousindex R, In_the next section we present the model and Its analytic
their concentrations being given Hy(R)dR. During the solution. In Sec. Il we calculate the thermodynamic proper-

past years considerable effort has been dedicated to the d £s via the virial and the energy routes: we start with the
velopment of concepts describing polydisperse systéars iscrete case and tr eat sybsquently the polydlsperse case.
a recent overview see, for instan¢4] and references quoted The paper closes with a discussion and a conclusion.
therein. Results presented up to now confirm that polydis-
persity does have a distinct influence both on the structure
[5] as well as on the phase behavior of such systets

Similar as for the discretéone-component or multicom- To define the model, we interpret &hcomponent system
ponenj case, there are only a few models where closed anaf SHS as limiting case of aiN-component system with
lytic expressions can be derived for the structural and thersquare-well interactions: a mixture of SHS being thus char-
modynamic properties for the polydisperstochastizcase.  acterized by the set of interactiods;

Il. MEAN SPHERICAL MODEL FOR A MIXTURE
OF STICKY HARD SPHERES

o0 rE[O,Rij)
7ii Rij
t]

e—0

_(r_Rij)ln

}@(Rij‘f‘{;‘_r) rE[Rij,OO),

where®(r) is the usual Heaviside step function and the parameﬁ@@RﬁXN represent the stickiness of the spheres. Rhe
are the core diameters of specie§=1,... N), R;=3(R+R)), $;=3(R—R;), and we assum&;>0. f=1kgT, kg
being the usual Boltzmann constant ahthe temperaturey stands for the total number density,are the concentrations of
specied, andp;=c;p are the partial number densities. The Boltzmann factor for the interactjas given by[where 5(r)

is the usual Dirac delta functign

e_ﬁq’ii(’)=(r—Rij)-l—'yinijé(r—Rij). (2)
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An analytic solution of the Ornstein-Zernik©2) equa- ,
tions along with the MSM closure relation for the system A(k)=de{ 5ij—277\/rpjj elerij(r)dr}>0
under consideration can be given in terms of the total corre-
lation functionsh;;(r): If we use the Wiener-HopfWH) forall Im(k)=0. (7)

technique [12], then the hj;(r) of the MSM for an
N-component system of SHS are found to(lrethe follow-
ing the summation indices are running—unless otherwis
stated—from 1 tdN)

A necessary condition for the above criterion is the require-
gnent thatA (0)>0 [12].

IIl. THERMODYNAMIC PROPERTIES

A. N-component system
rhij(|r|):_Qi,j(r)+27T2k pkf Qik(D)(r —t)hy; 1. Virial route
Introducing the cavity functions;; (r),
(r—tydt, e[S, ., @3 ’ y i)

L+hy(r)=e APy, (r), (8)

with the factor function®;;(r) [9] we obtain the virial pressure

1 2
Qij(N=0(r=8y)|5a(r—Ry)*+(b+aR;) Bp=p+§i2j pipi R (R — ¥ii[2yij (Ryp)
X(r=Ry)+Tij|O(R;—r), rek, (4 PO le=ry T ©)

By combining Egs.(2) and (8) with Egs. (3) and (4) we
derive the contact values

and
1 wme R [ryii (1) lr=r, =272 Qi ST+ aiRyj + by
aj= = 2 1= :Riai+2bi, (5)
& (1-&) & Rij 6(LR+{R)
=22, pl e
K ] 1—53 1_53

TS R TymnR 6t S R 3RR

(=g « iR Ty=wRi. =5 2 R, +i—J'§2 (10

2(1—£5)%

a=0,...,3.(6) and the(right-hand sidgderivatives of the regular part of the
h;j(r) at contact
To derive Eq.(4), one consider§9] a representation of the
SHS potential as a limiting case of a HS-Yukawa interaction: [ryi; (D1 | =g, =a+27>, p(@Skt b))y
there one uses an analytical solution of the OZ equations ! k
with Yukawa closure and examines this solution in the limit

where the interaction become® a suitable manngrboth 127, Pink(Sik)[rYKj(r)]|r:Rk-;
infinitely strong and infinitely short ranged, thus representing k J

the surface adhesion of SHS. This limit was first considered (11)

for the one-component caselib3]; the generalization to the

N-component case was presented9h the latter expression can be calculated explicitly using Egs.

To conclude one should point out that the solution of the(4) and (10). Inserting these expressions into H§) and
original OZ equations is equivalent to the solution of the WHintroducing 7,= (7/6)Z,p,{,|R*, «=0,1,2, one obtains fi-
formulation provided thaf12,14] nally

ar ar ar ar
2483 2 pie 2 piliR = 2 pillik 24(6— &) 2 pid?
6 i 6 j 6 k 6 i

T & 3&& 36 24m,&,

6PP~ 1 & (1-£,)7  (1—£9)2 1-¢& i 1-4&, 1-¢&,
12 moés+ moés) 12 méa—mots)  367mE5 ™ ™ ™ 129,
s e ueer ey aliey e g
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v ar T T ar ar
288 > piliRz X pi&il 288 > pix X pjrinjz_E pr&lic 726
6 i 6 j 6 i 6 ] 6 k 6

o
Ei Pi§ig; ijinjZ
+ n -
1-§&; 1-&; (1-£)?
o
725252i pilfR 144, 7, _ _ _ _

- - —576- — T R— - Il 15

(1—&3)? (1—&;)2 62P|6;PJ ij 16;pk |k62|/0| kIL 1] (12

if A(0)>0, undefined otherwise. Note that the corresponding expression for the PY equation is given for the one-component
case in[1] and for theN-component case ifl5].

In contrast to the PY equation, the MSM solution allows to derive a closed expression for the specific Helmholtz free energy
(free energy per unit volumef, associated with Eq12): if we use the thermodynamic relation

2p(Bp)=—Tp H(B0)]
P Pp(Bp) = [ )1,

(13
we find for the exceséover the ideal gasspecific free energy of Eq. (12)
T 38 346, 38 u IN[1- &3]+ &5 [ o
—Bf=—&In[1— &1+ —In[1— &5+ + +12— P-12————=110- e
6 ﬂ §0 [ §3] gg [ §3] 1_53 §3(1_§3) 6 EI plgl % 6 EI plgl
aw a a a a a
—2= E pig 2 pjrinjz_ > ol 2m1€0— moE1— moés +12— Z Pz E pjrinjz_ > ol
In[1—&5] 1 In[1-¢]  2-3& )
—-12 + - —36 +
[ f% 53(1_53) {7’152 7]251} gg 2(1_53)255 7]262
w m m In[1—¢&s] 21In[1— &3]+ &3(2+ &a)
—48g Z Pig ; pil'ij 5 Ek Pl i+ 12§—3 70— 144 &
r T T T T 1 2In[1—-§3]+&a(2+&3)
X[g Z PigiRig Ej: pi¢ilij+ 5 Z Pig 2}: Pjrinjg Ek: Pkfkrik} _72[ 1-¢, + &
v T a w v a v
Xiérx 2 Pifi_z Pjrinj2+§2— 2 pilfRi+2m 1y — 192~ 2 pig E piliiRi= > ol 2 pillyj,
6 i 6 i 6 i 6 i 6 j 6 k 6 |
(14
if A(0)>0, undefined otherwise.
|
2. Compressibility route dei(p)  dei(p)
For anN-component system of SHS within the MSM a apj ” api ' (16
closed analytical expression is also available for the direct

correlation functions;;(r) [16]. From this the compressibil- I-€., the compressibility pressudeesdependent on the ther-
ity pressure is obtained via modynamic path, an inconsistency that is certainly due to the
MSM.
ap 3. Energy route
— 2 —

ﬂ(g_pi_l_‘l'ﬂ-Ek Pkf reci(rydr=¢i(p). (19 If we use the energy equation of state, then the excess
(over a HS reference mixturespecific free energy via the
energy routef, is determined by17,15

apf dyii
ﬁZ_ZW% Piijﬁyij(Rij)a_ﬂ”y (17

The explicit, rather lengthy expression for thg(r) [from
which follow the ¢;(p)] is given in Eq.(25) of [16]. How-
ever, a closer inspection of this relation reveals that
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which can be directly integrated and yields a replacement that is based on the law of large nuniidis
As a consequence, summations over speciensform into
722 E 72 integrals overR. Similar to the diameter®;, we have to
T —  18mé&, 127 6 < Pi° transform the stickinessy; into a random variableG
K _ + _ i A : .
6 B (1-£)? 1-& 1-&, G(R), which is—by definition of polydisperse systems—a

function of the random variablB. In an effort to make the
- - - stochastic limit possiblandto preserve at the same time the
—485 2 Pig E p;ilij 3 > pil'iCj, (18)  analyticity of the expressions, we have to introduce—as al-

' ! K ready explained ifi9]—a further restriction on the;; . This

where we have used the symmetry relation= Ly, assumption is known in literature as the Berthelot rule and is

1 | . . .

+;); for the PY solution cf[17] (one-component caj}se frtzequently used in mixturegl8]. Its multicomponent form,

and[15] (multicomponent cageAgain, expression(18) is i (Rij) = 7i(Ri) 7j;(R;;), transforms for the stochastic case
p g p . . /

valid for A(0)>0 and undefined else. into the functional relation

B. Stochastic limit =G(R)G(R") (20

1
?| 3(R+R")

The expressions derived in the preceding section allow to
perform the stochastic limicf. Sec. 1V in[9]), arriving thus with the unique continuous solution
at a polydisperse system. In such a system each particle Is
“uniquely associated with a value of some characteristic pa- G(R)= 706X, (21)
rameterX, distributed according to a probability distribution
function fy(x); X is a continuous random variabl¢11]. In
our case the diamet& of the particles is the natural choice
for the continuous random variabl¥=R, R being distrib-
uted according to a probability distributidikz(R). The pre- o ] .
scription for this stochastic limit is to replace the discrete  On substituting the multicomponent form of E@1) in
concentrations; and partial densitiep; of anN-component  Ed. (14) and applying to the resulting expression the stochas-

vo andz being two positive adjustable parameters.

1. Virial route

system via tic limit, we arrive at the excesi®ver the ideal gasspecific
free energy via the virial route of the MSM for a polydis-
¢i—fr(R)AR, pi—pfr(R)dR, (199  perse system of SHS

T 38 366 34 0 1 ETE 0
gﬁf— EoIn[1-&5]+ §_§In[1 &+ 1_53"‘53(1_53)"‘125 g—g{lof 2mé;
n[1-§s] 1 In[1—§5] 2—-3¢&3
_ 12601 — mak1}—36 5
77251 7’0§3}+ 2‘5 { gg + 53(1_53)}{77152 77251} [ é:g + 2(1_§3)2§§] 77252
3 & (2 2 - 21 1— &5]+ &5(2+
-7 > (i )m4ij<2z>( - )mi+k<2z)( )mu, JEEP IR AL | MGl gg)]
i,j,k=0 J &3 §3
1 2In[1—- + &x(2+
><{§&”+§<2°’}—72[ t L 53153 &l 53)] {&2(69+E3)+ 2muma)
3
3 & 2 2 2 2\ ,
7 i,j%:o ( i >m4—i—j(22)m1+i+l(22)( j )m2+j—k(22)( k)m2+k—l(22)< | )70, (22)
|
with the generalized moments mi(0)=§&;, i=0,...,3, (24)
- and with
mi(t)= gpf fr(R)eR?RdR, (23 , 2 ) )
g = ( ) ”2:0 m4ij+w(22)(i)mi+u(z)(j>mj+v(z),
the (usua) moments (25
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2 2
77u:¥2 m2—i+u(z)( i )mi+1(2)a (26)
i=0
3 2
g(W): ﬁ) E (.z)m4_i_k+w(22)mi+u(z)
u 4 ) ijk=o0\l
2
X(j m2—j+k(22)mj+1(z)(k . (27)

Note that the ideal gas part has to be treated sepalfdtEly
A closer inspection of the expressig@2) reveals that the

480 +2£5 4%y

2Exn0t €120 2E110
1
D(s)=Es—3 5221+§§131 §121
2611t 6121 26111
1
Ex01t 55111 101
and
1 Ki2
§0jk(3):g[mj(kz)—mj(kz—zs)])’o , (30
1 1)1t ki2 -
§ijk(5):g 5(i—1)jk(3)—(—§ yomiti(kz)|, =12,
(31)
— . &ik(s)
§ijk(s)= 1-¢,° (32
— 3&¢&i+1k(S)
(@) (g)= &.. Thesiyr ks
guk(s) §|Jk(s)+ (1_53)2
3 2 2
1, UEO §i(2+j—u)(k+1)(5)( u)mu+1(2) 52,
(33

Thus, the necessary condition @4t0)>0 is also calculated
by a limited number of moment densities only: we obtain

from Eqgs.(30), (31), and(23),

. (-1 .
l'if:) §ijk(5):m—l)!mi+j+1(k2)’yg/2, i=0,1,2; (34
hence, D(0) depends onm;(0), i=2,3,4, mi(2), i

=1,...,5, andn(22), i=1,...,5,i.e., on 13 moments.

PHYSICAL REVIEWGZ 031104

knowledge of only 15(generalized moments[m;(0), i
=0,...,3,mi(2), i=0,...,4,m(22), i=0,...,9is suf-
ficient to calculate the complete thermodynamic properties of
the system. Hence, ER?2) is of what Sollichet al.[19] call
the “truncatable moment free energy format.”

As shown in[9], condition(7) becomes in the stochastic
limit [limy_.A(k)=detD(—ik)]

detD(s)>0 forall Rgs)=0, (28
with (Es being the five-dimensional unit matjix
AL AL AL
28011 28021 28031
So22 032 Eoaz (s), seC, (29)

26012 26022 25032

5002 6012 5022

2. Energy route

On substituting the multicomponent form of E@1) in
Eq (18) and applying to the resulting expression the stochas-
tic limit, we arrive at the excesfver a polydisperse HS
system specific free energy via the energy route of the MSM
for a polydisperse system of SHS

s 18m&, 127,  T2&
6 (1-£&)% 1-& 1-&

3 & (2 2
S (i)mA_i_j(zz)(j)mHk(ZZ)

4iik=0

2 3
Xl JM2+-k(22) %5, (35

if detD(0)>0, undefined else. Here, Ifeneralized mo-
ments are sufficient to calculate[m;(0), i=2,3, mi(2), i

=0,...,3, m(2z2), i=0,...,4. Hence again,f_ is a so-
called "truncatable moment free energj19].

IV. DISCUSSION AND CONCLUSION

In this contribution we have shown that the thermody-
namic properties of a polydisperse SHS system within the
MSM can be derived from the expressions for an
N-component system by fully maintaining the analyticity of
the expressions. The model presented here is the most simple
extension beyond a polydisperse system of HS, including
attractive interactions; hence a spinodal decomposition is to
be expected. We summarize in the following the criteria for
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phase stability and spinodal decompositi@inthe system is the moments, the inner functional derivates are then given by

stable, if defD(s) >0 for all Re(s)=0; (ii) a necessary con- the weights of these momengsee alsd19]). Both, the ex-

dition for this criterion is deD(0)>0; (iii) the spinodal is pressions for the pressure and the chemical potentials turn

determined via the equation d8(0)=0 [12,20,2]. out to be rather lengthgfor applications we recommend the
We have presented closed expressions for the specific fraese of symbolic computer languageand hence are not pre-

energyf obtained via the virial and the energy route; thesented here.

compressibility route has to be discarded due to an inconsis- The special attractive feature of the model presented here

tency of the MSM. These expressions are sufficient to derivés that both, for the virial and the energy route, the full in-

all thermodynamic quantities that are required to determindormation on the excess thermodynamic properties can be

phase coexistence. The presspiis obtained via differentia- obtained from a limited number gfeneralizedmoments of

tion of f with respect to the densifgf. Eq.(13)]: p emerges the given distribution functioriz(R). Other examples of this

as a prefactor to thégeneralizegl moments, hence the ex- class, called “truncatable systemg19], are the (well-

plicit expressions fop can be derived in a straightforward known) polydisperse H$7], and, more recently considered

way. The chemical potentiajs; become—as a consequence in [22], the polydisperse Zwanzig model of hard rods.

of the stochastic limit—(R), i.e., functions of the particle

sizeR. They are obtained from the specific free energia

functional derivative with respect tof g(R), ACKNOWLEDGMENTS
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